НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ Надежность в технике

ПЛАНЫ ИСПЫТАНИЙ ДЛЯ КОНТРОЛЯ КОЭФФИЦИЕНТА ГОТОВНОСТИ

Dependability in technics. Compliance test plans for steady-state availability

OKC 21.020

Дата введения 2010-09-01

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены <u>Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом</u> <u>регулировании"</u>, а правила применения национальных стандартов Российской Федерации - <u>ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации.</u> Основные положения"

Сведения о стандарте

- 1 РАЗРАБОТАН Федеральным государственным предприятием "Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении" (ФГУП "ВНИИНМАШ")
- 2 BHECEH Техническим комитетом по стандартизации ТК 119 "Надежность в технике"
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 декабря 2009 г. N 1245-ст

4 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в "Национальные издаваемом информационном указателе стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

Настоящий стандарт распространяется на восстанавливаемые (ремонтируемые) изделия, распределения наработок между отказами которых аппроксимируют экспоненциальным распределением, и устанавливает планы контрольных испытаний для проверки соответствия коэффициента готовности заданным требованиям. Требования стандарта применимы при испытании одного изделия.

2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий стандарт:

<u>ГОСТ 27.002-89</u> Надежность в технике. Основные понятия, термины и определения

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочного стандарта в информационной системе общего пользования - на официальном сайте федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты". который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт (изменен), пользовании настоящим стандартом при руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения и обозначения

- 3.1 В настоящем стандарте применены термины по <u>ГОСТ 27.002</u>, а также следующие термины с соответствующими определениями:
- 3.1.1 план испытаний: Совокупность правил, определяющих продолжительность испытаний и принятие решений в зависимости от суммарного учитываемого числа наблюдений (проб, опытов) и учитываемого числа отказов (неудач), достигнутых (накопленных) к данному моменту испытаний.
- 3.1.2 приемочный уровень: Пороговое значение коэффициента готовности для принятия решения о приемке изделий.

Примечание - Решение о приемке принимают, если истинное значение коэффициента готовности равно или более приемочного уровня.

3.1.3 **браковочный уровень:** Пороговое значение коэффициента готовности для принятия решения о браковке изделий.

Примечание - Решение о браковке принимают, если истинное значение коэффициента готовности равно или менее браковочного уровня.

- 3.1.4 риск поставщика (изготовителя): Вероятность принятия решения о браковке изделий при условии, что истинное значение коэффициента готовности равно приемочному уровню.
- 3.1.5 риск потребителя: Вероятность принятия решения о приемке изделий при условии, что истинное значение коэффициента готовности равно браковочному уровню.

3.2 В настоящем стандарте применены следующие обозначения:

α - номинальный (заданный) риск поставщика;

β - номинальный (заданный) риск потребителя;

 A_0 - приемочный уровень;

 $A_{\!1}$ - браковочный уровень;

 $U_0\,$ - приемочный уровень коэффициента простоя; $U_0\,$ = 1 – $A_0\,$;

 U_1 - браковочный уровень коэффициента простоя; U_1 = 1 - A_1 ;

D - разрешающий коэффициент; $D = U_1 / U_0$;

Ac(r) - граница приемки в последовательных испытаниях;

Re(r) - граница браковки в последовательных испытаниях;

 $U_{
m lim}\,$ - критерий принятия решения;

 $U_{1-\alpha}$ - квантиль уровня (1- α) нормированного нормального распределения;

 $F_{1-\alpha}(\nu_1,\nu_2)$ - квантиль уровня $(1-\alpha)$ F-распределения с (ν_1,ν_2) степенями свободы;

 m_{∞} - среднее время пребывания изделия в неработоспособном состоянии;

 m_u - наработка на отказ;

 л - объем выборки; число отказов (восстановлений) изделия за время испытаний ограниченной продолжительности;

r - число отказов в последовательных испытаниях;

T - суммарное время пребывания изделия в работоспособном состоянии; $T = \sum t_i \; ;$

 τ^* - продолжительность испытаний;

 t_i - наработка между отказами; i = 1, 2, 3, ...;

Y - суммарное время пребывания изделия в неработоспособном состоянии; $Y = \sum y_i$;

 \mathcal{Y}_i - время пребывания изделия в неработоспособном состоянии; i = 1, 2, 3, ...;

 $f(t)\,,\;\;E(t)\,,\;\;E(t^2)\,\;$ - плотность, математическое ожидание (среднее значение) и дисперсия распределений случайных величин;

гамма-распределение:

$$f(t) = S(st)^{p-1} \exp(-st) / \Gamma(p),$$

$$E(t) = p / s,$$

$$E(t^2) = p / s^2;$$

Р - параметр формы;

s - параметр масштаба;

$$\Gamma(p)$$
 - гамма-функция:
$$\Gamma(p) = \int\limits_0^\infty y^{p-1} \exp(-y) dy, \ \Gamma(p) = (p-1)! \ \ \text{при целых } p \ ;$$

экспоненциальное распределение (частный случай гамма-распределения при P=1):

$$f(t) = \text{sexp}(-st),$$

$$E(t) = 1/s,$$

$$E(t^2) = 1/s^2.$$

4 Основные положения

4.1 Контролируемыми показателями готовности являются стационарный коэффициент готовности или стационарный коэффициент технического использования (далее - коэффициент готовности).

Методы контроля, установленные в настоящем стандарте, в качестве контролируемого показателя используют также коэффициент простоя, дополняющий значения коэффициента готовности и коэффициента технического использования до единицы.

- 4.2 По результатам испытаний в отношении контролируемого показателя принимают одно из следующих решений:
 - соответствие установленным требованиям (приемка);
 - несоответствие установленным требованиям (браковка).
- 4.3 При испытаниях высоконадежного изделия отказ может не наступить, поэтому не могут быть получены количественные данные о готовности изделия. В подобных случаях заинтересованные стороны должны прийти к согласованному решению.
- 4.4 Исходными данными для выбора плана испытаний являются номинальный риск поставщика α и риск потребителя β , а также приемочный и браковочный коэффициенты простоя (разрешающий коэффициент D).
- 4.5 Планы испытаний, установленные в настоящем стандарте, предназначены для непрерывно работающих изделий, готовность которых определяют относительно суммарного времени их эксплуатации.

При использовании планов испытаний для изделий с прерывающимся режимом работы должны быть приняты соответствующие решения в отношении учета числа восстановлений изделия в перерывах между рабочими периодами.

4.6 Методы испытаний, установленные в настоящем стандарте, применимы только для изделий, которые могут находиться в двух состояниях - работоспособном и неработоспособном.

Для сложных изделий могут быть установлены несколько режимов работы. В этом случае планы испытаний следует применять раздельно для каждого режима работы изделия. При получении противоречащих друг другу результатов контроля готовности для разных режимов работы должны быть установлены требования к принятию решений.

4.7 В зависимости от вида контролируемого показателя, составляющие времени пребывания изделия в неработоспособном состоянии подразделяют на учитываемые и неучитываемые. Классификация составляющих времени пребывания в неработоспособном состоянии должна быть установлена до начала испытаний.

5 Распределения временных характеристик

5.1 Испытаниям подвергают работоспособное изделие. По истечении интервала времени возникает первый отказ и изделие переходит в неработоспособное состояние. После восстановления изделие возвращается в работоспособное состояние. Затем начинается новый цикл "работоспособность - отказ - неработоспособность - восстановление". Реализация этого процесса представлена на рисунке 1.

Рисунок 1 - Типовая реализация процесса функционирования изделий при испытаниях в виде испытательных циклов

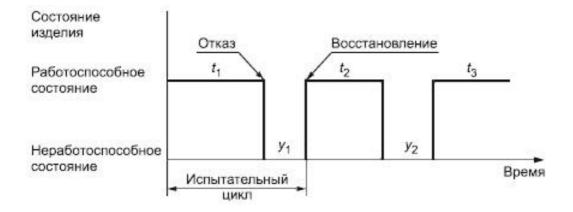


Рисунок 1 - Типовая реализация процесса функционирования изделий при испытаниях в виде испытательных циклов

5.2 В основе планов испытаний лежит предположение, что наработка изделия между отказами представляют собой выборку из экспоненциального распределения, а продолжительность пребывания в неработоспособном состоянии - выборку из гамма-распределения. Значение параметра формы \mathcal{P} определяют по согласованию между поставщиком и потребителем до начала испытаний (по результатам испытаний аналогичных изделий или оценивают по статистическим данным, полученным в процессе испытаний.*

Примечание - При отсутствии информации допускается по согласованию между поставщиком и потребителем принимать $\mathcal{P} = 1$ (экспоненциальное распределение пребывания изделия в неработоспособном состоянии).

6 Виды планов испытаний

6.1 План испытаний с ограниченным числом отказов

Определяют число отказов n, которое должно быть получено в ходе испытаний как минимальное из возможных чисел, для которых выполняется неравенство

$$F_{1-\alpha}(2pn;2n)F_{1-\beta}(2n;2pn) \le D(1-U_0)/(1-DU_0). \tag{1}$$

Вычисляют значение критерия принятия решения U_{lim} по формуле

$$U_{\text{lim}} = F_{1-\alpha}(2pn; 2n)U_0/(1-U_0). \tag{2}$$

По результатам испытаний после получения n отказов вычисляют значение Y/T .

Решение о приемке изделий принимают в случае, если $Y/T \leq U_{\mathrm{lim}}$. В противном случае принимают решение о браковке.

Значения $F_{1-\alpha}(\nu_1,\nu_2)$ и $F_{1-\beta}(\nu_1,\nu_2)$ приведены в таблице 1.

Таблица 1 - Квантили F -распределения с (v_1, v_2) степенями свободы

v_2	v_1										
	2	4	6	8	10	20	30	40	60	120	

^{*} Текст соответствует оригиналу. - Примечание изготовителя базы данных.

0,80 квантиля

2	4,00	4,24	4,32	4,36	4,38	4,43	4,45	4,46	4,46	4,47
4	2,47	2,48	2,47	2,47	2,46	2,44	2,44	2,44	2,43	2,43
6	2,13	2,09	2,06	2,04	2,03	2,00	1,98	1,98	1,97	1,96
8	1,98	1,92	1,88	1,86	1,84	1,80	1,78	1,77	1,76	1,75
10	1,90	1,83	1,78	1,75	1,73	1,68	1,66	1,65	1,64	1,63
12	1,85	1,77	1,72	1,69	1,66	1,61	1,59	1,58	1,56	1,55
14	1,81	1,73	1,67	1,65	1,62	1,56	1,53	1,52	1,51	1,49
16	1,78	1,70	1,64	1,61	1,58	1,52	1,49	1,48	1,47	1,45
18	1,76	1,67	1,62	1,58	1,55	1,49	1,46	1,45	1,43	1,42
20	1,75	1,65	1,60	1,56	1,53	1,47	1,44	1,42	1,41	1,39
30	1,70	1,60	1,54	1,50	1,47	1,39	1,36	1,35	1,33	1,31
40	1,68	1,57	1,51	1,47	1,44	1,36	1,33	1,31	1,29	1,26
60	1,65	1,55	1,48	1,44	1,41	1,32	1,29	1,27	1,24	1,22
120	1,63	1,52	1,45	1,41	1,37	1,29	1,25	1,23	1,20	1,17

	0,90 квантиля											
2	9,00	9,24	9,33	9,37	9,39	9,44	9,46	9,47	9,47	9,48		
4	4,32	4,11	4,01	3,96	3,92	3,84	3,82	3,80	3,79	3,78		
6	3,46	3,18	3,05	2,98	2,94	2,84	2,80	2,78	2,76	2,74		
8	3,11	2,81	2,67	2,59	2,54	2,42	2,38	2,36	2,34	2,32		
10	2,92	2,61	2,46	2,38	2,32	2,20	2,16	2,13	2,11	2,08		
12	2,81	2,48	2,33	2,24	2,19	2,06	2,01	1,99	1,96	1,93		
14	2,73	2,39	2,24	2,15	2,10	1,96	1,91	1,89	1,86	1,83		
16	2,67	2,33	2,18	2,09	2,03	1,89	1,84	1,81	1,78	1,75		
18	2,62	2,29	2,13	2,04	1,98	1,84	1,78	1,75	1,72	1,69		
20	2,59	2,25	2,09	2,00	1,94	1,78	1,74	1,71	1,68	1,64		
30	2,49	2,14	1,98	1,88	1,82	1,67	1,61	1,57	1,54	1,50		
40	2,44	2,09	1,93	1,83	1,76	1,61	1,54	1,51	1,47	1,42		
60	2,39	2,04	1,87	1,77	1,71	1,54	1,48	1,44	1,40	1,35		
120	2,35	1,99	1,82	1,72	1,65	1,48	1,41	1,37	1,32	1,26		

	0,95 квантиля												
2	19,00	19,25	19,33	19,37	19,40	19,45	19,46	19,47	19,48	19,49			
4	6,94	6,39	6,16	6,04	5,96	5,80	5,75	5,72	5,69	5,66			
6	5,14	4,53	4,28	4,15	4,06	3,87	3,81	3,77	3,74	3,71			
8	4,46	3,84	3,58	3,44	3,35	3,15	3,08	3,04	3,01	2,97			
10	4,10	3,48	3,22	3,07	2,98	2,77	2,70	2,66	2,62	2,58			
12	3,89	3,26	3,0	2,85	2,75	2,54	2,47	2,43	2,38	2,34			
14	3,74	3,11	2,85	2,70	2,60	2,39	2,31	2,27	2,22	2,18			
16	3,63	3,01	2,74	2,59	2,49	2,28	2,19	2,15	2,11	2,06			
18	3,55	2,93	2,66	2,51	2,41	2,19	2,11	2,06	2,02	1,97			
20	3,49	2,87	2,60	2,45	2,35	2,12	2,04	1,99	1,95	1,90			
30	3,32	2,69	2,42	2,27	2,16	1,93	1,84	1,79	1,74	1,68			
40	3,23	2,61	2,34	2,18	2,08	1,84	1,74	1,69	1,64	1,58			
60	3,15	2,53	2,25	2,10	1,99	1,75	1,65	1,59	1,53	1,47			
120	3,07	2,45	2,17	2,02	1,91	1,66	1,55	1,50	1,43	1,35			

6.2 План испытаний с ограниченной продолжительностью (превышающей пятнадцатикратное значение наработки на отказ)

Определяют продолжительность испытаний ${\it T}^*$ по формуле

$$T^* = m_u (1+p^{-1}) \left\{ \frac{U_{1-\alpha} \sqrt{1-U_0} + \left[\frac{U_{1-\beta} (1-DU_0) \sqrt{D}}{\sqrt{1-U_0}} \right]}{(D-1)} \right\}^2$$

$$(3)^{1)}$$

Значение критерия принятия решения U_{lim} вычисляют по формуле

$$U_{\text{lim}} = U_0 \frac{U_{1-\alpha}D(1-U_0) + U_{1-\beta}\sqrt{D}(1-DU_0)}{U_{1-\alpha}(1-U_0) + U\sqrt{D(1-DU_0)}}.$$
 (4)

По результатам испытаний вычисляют значения Y; T.

Решение о приемке принимают в том случае, если $Y/(Y+T) \leq U_{\lim}$. В противном случае принимают решение о браковке.

Значения $U_{1-\alpha}$ и $U_{1-\beta}$ приведены в таблице 2. Таблица 2 - Квантили нормированного нормального распределения

1 – α	$U_{1-\alpha}$
1-8	$U_{1-\beta}$
0,80	0,842
0,90	1,282
0,95	1,645

¹⁾ Формула соответствует оригиналу. - Примечание изготовителя базы данных.

6.3 План испытаний с ограниченной продолжительностью ($U \le 0,05$)

Этот план применяют, если m_{α} / m_{u} менее 0,05.

Продолжительность испытаний - T^* .

Критерий принятия решения U_{\lim} является функцией продолжительности испытаний и его значение определяют по таблице 3 с учетом соотношения между продолжительностью испытаний T^* и разрешающим коэффициентом D.

По результатам испытаний определяют значения Y, T.

Решение о приемке принимают в том случае, если $Y/(Y = T) \le U_{\lim}$ *.

Таблица 3 - Разрешающие коэффициенты D и браковочные пределы U_{\lim} для плана испытаний

T^*/m_u	$\alpha = \beta = 0.05$		α = 1	8 = 0,10	$\alpha = \beta = 0.20$					
	D	$U_{ m lim}$ / U_0	D	$D = U_{\lim} / U_0$		$U_{ m lim}$ / U_0				
	p = 1									
1,0	24,72	3,92	15,01	2,91	7,37	1,86				
1,2	20,01	3,64	12,39	2,75	6,30	1,83				
1,4	16,88	3,42	10,64	2,63	5,56	1,80				
1,6	14,66	3,24	9,38	2,52	5,03	1,77				
1,8	13,01	3,10	8,44	2,44	4,63	1,74				

^{*} Соответствует оригиналу. - Примечание изготовителя базы данных. В противном случае принимают решение о браковке.

]					
2,0	11,73	2,98	7,70	2,36	4,31	1,71
2,5	9,52	2,75	6,42	2,22	3,74	1,65
3,0	8,12	2,58	5,59	2,11	3,37	1,61
3,5	7,15	2,45	5,01	2,03	3,10	1,57
4,0	6,44	2,34	4,58	1,96	2,90	1,54
5,0	5,46	2,19	3,98	1,86	2,61	1,49
6,0	4,82	2,07	3,58	1,78	2,42	1,45
7,0	4,36	1,99	3,29	1,72	2,28	1,42
8,0	4,02	1,92	3,07	1,67	2,17	1,40
9,0	3,75	1,86	2,90	1,63	2,08	1,37
10,0	3,53	1,81	2,76	1,60	2,01	1,36
15,0	2,88	1,65	2,33	1,49	1,78	1,29
20,0	2,53	1,56	2,10	1,42	1,65	1,26
			p = 2			
1,0	18,94	3,47	11,74	2,59	6,01	1,87

J							
1,2	15,43	3,22	9,78	2,54	5,19	1,81	
1,4	13,11	3,04	8,46	2,42	4,63	1,76	
1,6	11,45	2,89	7,52	2,33	4,22	1,72	
1,8	10,22	2,77	6,80	2,25	3,91	1,69	
2,0	9,26	2,67	6,25	2,18	3,66	1,66	
2,5	7,62	2,47	5,28	2,06	3,22	1,60	
3,0	6,56	2,33	4,65	1,96	2,93	1,55	
3,5	5,83	2,22	4,20	1,89	2,72	1,51	
4,0	5,29	2,13	3,84	1,83	2,56	1,48	
5,0	4,54	2,00	3,40	1,74	2,33	1,44	
6,0	4,05	1,91	3,09	1,67	2,17	1,40	
7,0	3,70	1,84	2,87	1,62	2,06	1,37	
8,0	3,43	1,78	2,70	1,58	1,97	1,35	
9,0	3,22	1,73	2,56	1,54	1,90	1,33	
10,0	3,06	1,69	2,45	1,51	1,84	1,31	

	11					L
15,0	2,54	1,56	2,10	1,42	1,65	1,26
20,0	2,26	1,48	1,92	1,36	1,55	1,22
			p = 5			
1,0	15,37	3,14	9,64	2,52	5,05	1,83
1,2	12,72	2,93	8,19	2,38	4,48	1,77
1,4	10,87	2,77	7,15	2,27	4,04	1,72
1,6	9,54	2,64	6,38	2,19	3,71	1,68
1,8	8,55	2,54	5,80	2,11	3,45	1,61
2,0	7,78	2,45	5,36	2,05	3,25	1,61
2,5	6,47	2,28	4,57	1,94	2,89	1,55
3,0	5,62	2,16	4,06	1,85	2,65	1,51
3,5	5,03	2,07	3,70	1,79	2,47	1,47
4,0	4,59	1,99	3,43	1,73	2,34	1,44
5,0	3,98	1,88	3,04	1,65	2,15	1,40
6,0	3,58	1,80	2,79	1,60	2,02	1,36

		L				L
7,0	3,29	1,73	2,60	1,55	1,92	1,34
8,0	3,07	1,68	2,46	1,51	1,84	1,32
9,0	2,90	1,64	2,34	1,48	1,78	1,30
10,0	2,76	1,61	2,25	1,46	1,73	1,28
15,0	2,32	1,49	1,96	1,37	1,57	1,23
20,0	2,09	1,42	1,80	1,32	1,48	1,20

6.4 Последовательные испытания

Продолжительность испытаний изделий по этому плану зависит от коэффициента готовности. После очередного восстановления в соответствии с приведенными ниже правилами принимают решение о завершении испытаний или об их продолжении. Границы приемки и браковки зависят от числа циклов (отказов и восстановлений) изделия, произошедших на данный момент времени.

Изделие бракуют, если $Y / T > Re(r) U_0 / (1 - U_0)$.

Изделие принимают, если $Y/T \le Ac(r)U_0/(1-U_0)$.

Испытания продолжают, если $Ac(r)U_0 / (1-U_0) \le Y / T \le Re(r)U_0 / (1-U_0)$.

Границы областей приемки и браковки рассчитывают по формулам:

$$Ac(r)=rac{D-H(r)}{p[H(r)-1]},$$
 если $r>rac{\lnrac{1-eta}{lpha}}{\ln D}$ и $Ac(r)=0$ - в противном случае;

$$Re(r)=rac{D-G(r)}{p[G(r)-1]}$$
 , если $r>rac{\lnrac{1-lpha}{eta}}{p\ln(D)}$ и $Re(r)=\infty$ - в противном случае,

где
$$G(r) = D^{1/(1+p)} [\alpha/(1-\beta)]^{1/(r+rp)}$$
,

$$H(r) = D^{1/(1+p)}[(1-\alpha)/\beta]^{1/(r+rp)}$$
.

Значения Ac(r) и Re(r) приведены в таблице 4.

Пример плана последовательных испытаний для исходных данных P=1, D=5, $\alpha=\beta=0,1$ приведен на рисунке 2.

Рисунок 2 - Пример плана испытаний

Границы браковки Re(r) и приемки Ac(r)

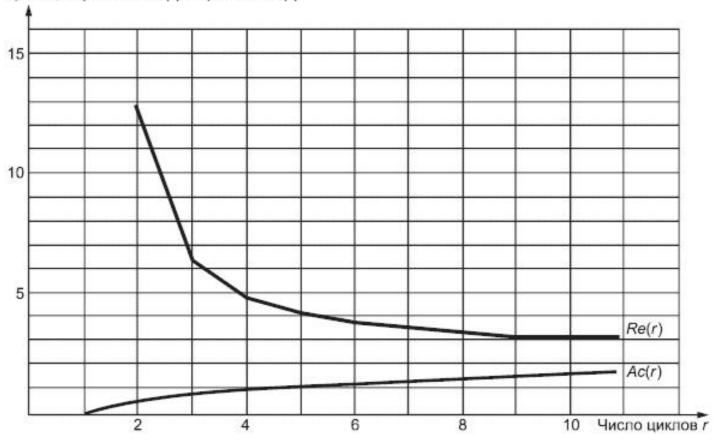


Рисунок 2 - Пример плана испытаний

Таблица 4 - Границы областей приемки Ac(r) и браковки Re(r) для последовательного плана испытаний

r	$\alpha = \beta = 0.05$		$\alpha = \beta$	= 0,10	$\alpha = \beta = 0.20$					
	Ac(r)	Re(r)	Ac(r)	Re(r)	Ac(r)	Re(r)				
	D=2, p=1									
1	0,00	-	0,00	-	0,00	-				
2	0,00	0,00 -		-	0,00	-				
3	0,00	-	0,00	-	0,28	7,17				

		1 1	I I	I I	1 1	I
4	0,00	-	0,16	12,41	0,47	4,29
5	0,11	17,69	0,31	6,39	0,60	3,33
6	0,24	8,39	0,43	4,63	0,70	2,85
7	0,34	5,85	0,53	3,79	0,78	2,56
8	0,43	4,67	0,61	3,30	0,84	2,37
9	0,50	3,98	0,67	2,97	0,90	2,23
10	0,57	3,53	0,73	2,74	0,94	2,13
11	0,62	3,22	0,78	2,57	0,98	2,05
12	0,67	2,99	0,82	2,44	1,01	1,99
13	0,71	2,81	0,86	2,34	1,03	1,93
14	0,75	2,66	0,89	2,25	1,06	1,89
15	0,79	2,55	0,92	2,18	1,08	1,85
16	0,82	2,45	0,94	2,12	1,10	1,82
17	0,84	2,37	0,97	2,07	1,11	1,80
18	0,87	2,30	0,99	2,03	1,13	1,77

19	0,89	2,24	1,01	1,99	1,14	1,75
20	0,91	2,19	1,02	1,95	1,15	1,73
			D = 2, P =	2		
1	0,00	-	0,00	-	0,00	-
2	0,00	-	0,11	-	0,35	-
3	0,17	-	0,32	-	0,56	5,75
4	0,32	-	0,47	9,68	0,71	3,58
5	0,44	13,64	0,59	5,17	0,81	2,86
6	0,53	6,66	0,68	3,84	0,89	2,50
7	0,61	4,76	0,75	3,21	0,95	2,29
8	0,68	3,87	0,81	2,84	0,99	2,14
9	0,73	3,35	0,86	2,60	1,03	2,04
10	0,78	3,02	0,91	2,42	1,06	1,96
11	0,82	2,78	0,94	2,30	1,09	1,90
12	0,86	2,61	0,97	2,20	1,12	1,85

	<u> </u>		[<u> </u>	
13	0,89	2,47	1,00	2,12	1,14	1,82
14	0,92	2,36	1,03	2,05	1,15	1,78
15	0,95	2,28	1,05	2,00	1,17	1,76
16	0,97	2,20	1,07	1,96	1,18	1,73
17	0,99	2,14	1,09	1,92	1,20	1,71
18	1,01	2,09	1,10	1,88	1,21	1,69
19	1,03	2,04	1,12	1,86	1,22	1,68
20	1,05	2,01	1,13	1,83	1,23	1,66
			D = 2, P =	5		
1	0,04	-	0,12	-	0,28	-
2	0,26	-	0,37	-	0,57	-
3	0,42	-	0,55	-	0,74	4,89
4	0,54	-	0,67	8,04	0,86	3,16
5	0,64	11,21	0,76	4,43	0,94	2,59
6	0,72	5,63	0,84	3,37	1,00	2,30

7	0,78	4,10	0,89	2,87	1,05	2,13
8	0,83	3,39	0,94	2,57	1,09	2,01
9	0,88	2,98	0,98	2,37	1,12	1,93
10	0,92	2,71	1,02	2,24	1,15	1,87
11	0,95	2,52	1,05	2,13	1,17	1,82
12	0,99	2,38	1,07	2,05	1,19	1,78
13	1,01	2,27	1,09	1,99	1,20	1,75
14	1,03	2,19	1,11	1,94	1,22	1,72
15	1,05	2,12	1,13	1,90	1,23	1,70
16	1,07	2,06	1,15	1,86	1,24	1,68
17	1,09	2,01	1,16	1,83	1,25	1,66
18	1,10	1,97	1,17	1,80	1,26	1,65
19	1,12	1,93	1,19	1,78	1,27	1,64
20	1,13	1,90	1,20	1,76	1,28	1,63

D = 5, p = 1

1	0,00	-	0,00	-	0,15	32,89
2	0,09	55,32	0,39	12,75	0,85	5,86
3	0,51	9,84	0,80	6,27	1,20	4,16
4	0,79	6,31	1,06	4,72	1,41	3,54
5	1,00	5,01	1,24	4,03	1,55	3,23
6	1,15	4,34	1,37	3,64	1,65	3,03
7	1,27	3,93	1,48	3,39	1,72	2,90
8	1,37	3,65	1,56	3,21	1,78	2,81
9	1,45	3,45	1,62	3,09	1,83	2,74
10	1,51	3,30	1,67	2,99	1,86	2,68
11	1,57	3,18	1,72	2,91	1,90	2,64
12	1,62	3,09	1,76	2,84	1,92	2,60
13	1,66	3,01	1,79	2,79	1,94	2,57
14	1,70	2,95	1,82	2,75	1,96	2,55
15	1,73	2,89	1,84	2,71	1,98	2,52

16	1,76	2,85	1,87	2,68	2,00	2,50				
17	1,78	2,81	1,89	2,65	2,01	2,49				
18	1,80	2,77	1,91	2,62	2,02	2,47				
19	1,82	2,74	1,92	2,60	2,03	2,46				
20	1,84	2,71	1,94	2,58	2,04	2,45				
	D = 5, P = 2									
1	0,06	-	0,28	-	0,67	25,40				
2	0,62	42,23	0,86	10,27	1,23	5,10				
3	0,96	8,09	1,19	5,39	1,51	3,79				
4	1,19	5,42	1,40	4,22	1,68	3,32				
5	1,35	4,44	1,54	3,69	1,78	3,08				
6	1,47	3,93	1,65	3,39	1,86	2,93				
7	1,57	3,61	1,73	3,20	1,92	2,83				
8	1,64	3,40	1,79	3,07	1,96	2,76				
9	1,71	3,25	1,84	2,97	2,00	2,70				

10	176 *	3,14	1,88	2,89	2,03	2,66			
* Соответствует оригиналу Примечание изготовителя базы данных.									
11	1,80	3,05	1,92	2,83	2,05	2,63			
12	1,84	2,97	1,95	2,79	2,07	2,60			
13	1,87	2,92	1,97	2,75	2,09	2,58			
14	1,90	2,87	1,99	2,71	2,11	2,56			
15	1,92	2,82	2,01	2,68	2,12	2,54			
16	1,94	2,79	2,03	2,66	2,13	2,52			
17	1,96	2,76	2,05	2,64	2,14	2,51			
18	1,98	2,73	2,06	2,62	2,15	2,50			
19	2,00	2,71	2,07	2,60	2,16	2,49			
20	2,01	2,68	2,08	2,58	2,17	2,48			
D = 5, p = 5									
1	0,50	-	0,70	-	1,04	20,91			
2	0,99	34,38	1,20	8,80	1,51	4,65			

3	1,28	7,05	1,48	4,88	1,74	3,60	
4	1,47	4,91	1,65	3,94	1,88	3,21	
5	1,61	4,11	1,77	3,52	1,97	3,02	
6	1,71	3,70	1,85	3,27	2,03	2,90	
7	1,79	3,45	1,92	3,12	2,08	2,82	
8	1,85	3,28	1,97	3,01	2,11	2,76	
9	1,90	3,16	2,01	2,93	2,14	2,71	
10	1,94	3,06	2,04	2,87	2,17	2,68	
11	1,98	2,99	2,07	2,82	2,19	2,64	
12	2,01	2,93	2,10	2,78	2,20	2,63	
13	2,03	2,89	2,12	2,75	2,22	2,61	
14	2,06	2,85	2,14	2,72	2,23	2,59	
15	2,08	2,81	2,15	2,70	2,24	2,58	
16	2,10	2,78	2,17	2,68	2,25	2,57	
17	2,11	2,76	2,18	2,66	2,26	2,56	

18	2,13	2,74	2,19	2,64	2,26	2,55
19	2,14	2,72	2,20	2,63	2,27	2,54
20	2,15	2,70	2,21	2,62	2,28	2,53

Примечание - Знак "-" в таблице означает, что принятие решения о браковке в данном случае невозможно.

Приложение А (справочное). Примеры

Приложение А (справочное)

А1 Пример 1

План с ограниченным числом отказов

Исходные данные для определения плана испытаний: U_0 = 0,01; U_1 = 0,05; α = 0,10; β = 0,05; p = 2.

Определяют необходимое число отказов изделия в соответствии с неравенством (1), в том числе:

- вычисляют значение $D(1-U_0)/(1-DU_0)$ = 5(0,99)/0,95 = 5,2105;
- вычисляют значения $F_{1-\alpha}(2pn,2n)F_{1-\beta}(2n,2pn)$ для различных значений n до получения неравенства (1).

Результаты вычислений приведены в таблице.

n	10	4	5
$F_{1-\alpha}(2pn; 2n)F_{1-\beta}(2n; 2pn)$	3,15	6,40	5,17

Например, для n = 10 в таблице

$$F_{1-\alpha}(2pn; 2n)F_{1-\beta}(2n; 2pn) = F_{0,9}(40; 20)F_{0,95}(40; 20) = 1,71 \times 1,84 = 3,15$$

* Соответствует оригиналу. - Примечание изготовителя базы данных.

Таким образом, испытания изделия продолжают до наступления пятого отказа и последующего восстановления.

Вычисляют значение критерия принятия решения по формуле (2)

$$U_{\rm lim} = F_{1-\alpha}(2pn;2n)U_0/(1-U_0) = F_{0,9}(20;10)U_0/(1-U_0) = 2,20\times0,01/0,99 = 0,0222$$

Если отношение Y/T, вычисленное по результатам испытаний, не превышает значение $U_{\rm lim}$ = 0,0222, то изделие принимают.

В противном случае изделие бракуют.

Пример 2

План с ограниченной продолжительностью испытаний

Исходные данные для определения плана испытаний: U_0 = 0,10; U_1 = 0,20 (D = 2) ; α = β = 0 , 0 5 ; P = 1 (продолжительность неработоспособного состояния изделия предполагают распределенной экспоненциально).

Вычисляют продолжительность испытаний τ^* по формуле (3) и таблице 2

$$T^* = m_u (1+1^{-1}) \left\{ \frac{1,645\sqrt{0.9} + \left[\frac{1,645\times0.8\sqrt{2}}{\sqrt{0.9}} \right]}{2-1} \right\}^2 = \left[\frac{1,5606+1,9618}{1} \right] = 24,8m_u$$

и значение критерия принятия решения $U_{
m lim}$ по формуле (4)

$$U_{\rm lim} = \frac{0.10[1.645\times2\times(1-0.10)+1.645\sqrt{2}\,(1-2\times0.10)]}{1.645(1-0.10)+1.645\sqrt{2}\,(1-2\times0.10)} = 0.2288\,.$$

Если отношение Y/Y+T, вычисленное по результатам испытаний, не превышает U_{lim} = 0,2288, то изделие принимают.

В противном случае изделие бракуют.

Электронный текст документа

подготовлен ЗАО "Кодекс" и сверен по:

официальное издание

М.: Стандартинформ, 2010

^{*} Формула соответствует оригиналу. - Примечание изготовителя базы данных.